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It is assumed that the process of ferroelectric polarization of the beta phase of poly(vinylidene fluoride) (PVF2) 
in response to the action of the external electric field in direction perpendicular to the molecular axis and to the 
film, involves movement of the chain twist boundaries. These boundaries, at which every chain is twisted by 
180 degrees, separate domains of opposite polarization. The energy barriers that are surmounted as the 
boundary was advanced one repeat unit were calculated and compared with the energy gained by reversing 
the polarization of an unfavourably oriented repeat unit in an electric field that produces polarization in 
PVF2. It is suggested that the movement of chain twist boundaries, in contradistinction to previously 
postulated models in which only one chain is twisted at a time, provides a model for the poling of PVF2 that is 
feasible energetically and kinetically. Theoretical modelling, analogous to that for Bloch walt that separates 
domains in magnetic materials, suggest that the process of polarization might be described either as a diffusion 
process or as the propagation of a soliton along the chains. 

(Keywords: chain rotation; dipole reorientation; domain wall; ferroelectric polymers; polarization propagation; poling field; 
poling mechanism modelling; poly(vinylidene fluoride) beta phase; twist boundary) 

I N T R O D U C T I O N  

Two processes are involved in the creation of a macro- 
scopically polar specimen of poly(vinyl fluoride) (PVF2): 
mechanical extension and polarization in an externally 
applied electric field. Mechanical extension is employed to 
obtain highly aligned molecules in the all-trans confor- 
mation of PVFz, which is commonly designated as the 
beta phase. An oriented film of the polar, beta phase of 
PVF z is shown schematically in the top part of Figure 1. 
This film has the molecules aligned but unpolarized. 
Evidence from X-ray diffraction indicates that it contains 
grains, all with the chain axes aligned parallel to the draw 
direction, but with the other axes randomly oriented. 
Some of these grains are shown in the bottom part of 
Figure 1. This Figure shows the grain boundaries and 
typical directions of the transverse axes. In analogy with 
other ferroelectric materials we suppose that each grain 
contains domains within which the dipoles are aligned, 
but in the unpolarized state the dipole moments of the 
different domains tend to cancel so the external moment is 
small. This situation is depicted in the top part of Figure 2 
which is an enlargement of the small square in Figure 1. In 
this Figure, the domains A and B are shown to be 
separated by a transition layer, or longitudinal wall. A 
polarized orientation of the dipoles is created by applying 
an electric field at a temperature at which the molecules 
can rotate by a process of the general sort described in this 
paper. This field is applied in the direction perpendicular 
to both the chain axis and the PVF2 film. Usually fields in 
excess of 0.5 megavolt cm-1 are needed to create align- 
ment of dipoles, or poling. Subsequent cooling to room 
temperature traps this polarization. The bottom part of 
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Figure 1 Top: Schematic drawing of PVFz film. Bottom: Crystal 
grains shown by a circled region in the top drawing, are shown in more 
detail. The chain axes are all parallel to the draw direction. The a and b 
axes transverse to the draw axis are indicated by arrows. Grain 
boundaries are shown by hatched lines. The small rectangle shown in the 
bottom of this Figure is depicted in greater detail in Figure 2 
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Figure 2 Top: Dipoles are aligned within each domain, but the random 
directions of polarization in adjacent domains results in no macroscopic 
polarization. Longitudinal domain walls are shown by irregular lines. 
Bottom: Same region as in top of the Figure, but in the polarized state. 
The drawing in the bottom right corner of this Figure shows five chains 
on a molecular scale. Segments of these chains containing 21 carbon 
atoms are detailed in Figure 3 

Figure 2 shows schematically the ferroelectric domains in 
a polarized state. Measurements show that, as the polari- 
zation field cycles between positive and negative values at 
high temperature, the orientation of dipoles exhibits 
hysteresis-like behaviour. Ref. 1 summarizes the literature 
and provides references to the relevant experimental 
work. Related behaviour is observed in the dependence of 
the dielectric constant on the electric field. The reversal of 
the orientation of the dipoles in the applied field is an 
effect that occurs in other ferroelectric materials 2. 

Different models were proposed for the polarization 
reversal in terms of molecular packing and structural 

defects. In earlier w o r k  3'4 it was assumed that a single chain 
rotates 180 ° or by 60 ° . These models were investigated 
in more detail by Dvey-Aharon et al. 5. It was suggested 
there that the rotation propagates as a twist wave, 
propagating along a single molecule near a longitudinal 
domain wall of the sort shown in the top part of Figure 2 
and bringing in its wake a polarization reversal. The main 
difficulty inherent in these models is the probable exis- 
tence of a lattice misfit that increases as the twist 
progresses along the chain even though the part of the 
electrostatic energy not dependent on the external field 
also does not depend on the position of the twist. The 
extra energy arises if the rotated part of the chain does not 
fit into a low-energy position in the lattice. Unless there is 
no relative translation of the lattice on either side of the 
boundary (a point not examined), there will be a misfit 
problem for a twisted chain. Dvey-Ahron et al. 5 propose an 
alternative model in which the chain rotations proceed in 
60 ° increments with lower barriers to rotations. This 
mechanism does not appear  to be general since it requires 
a crystallographic reorientation as the domain grows and 
a particular orientational relationship between the do- 
mains is needed. 

The model we propose here, based on the motion of 
chain twist boundaries which are transverse to the chain 
axis 6, circumvents the difficulties encountered above. 
Chain twist boundaries are distinct from twist boundaries 
associated with screw dislocation arrays in low molecular 
weight crystals although for brevity we frequently refer 
simply to 'twist boundaries'  in this paper. This model is 
developed only for the polarization reversal in the beta 
phase of PVF2. The mechanisms for poling of the alpha 
phase of PVF 2 are more complicated. Twist boundaries 
are created by processes that involve folds, chain ends, 
and twist-bearing crystallographic defects 6, that is, dispi- 
rations and disclinations. The creation of twist boun- 
daries during deformation was discussed earlier 6. 

In this paper it is simply assumed that, at the tempera- 
ture at which poling occurs, and under the influence of the 
poling field, there is an appropriate supply of twist 
boundaries that move in a way described in this paper. 
Head-to-tail defects or copolymerization with poly(tetra- 
fluoroethylene) are known to stabilize desirable crystal 
phases. Twist boundaries passing these configurational or 
chemical defects leave the same kind of desirable crystal 
structure behind. While such features may have a small 
effect on the energy of a twist boundary, it is probable that 
most do not seriously impede passage of the boundary. 

The twist boundary which separates two domains of 
opposite polarization resembles a Bloch wall. A Bloch 
wall is a transition layer separating adjacent domains 
magnetized in opposite directions in ferromagnetic ma- 
terials. In common with our twist boundary, the magnetic 
dipoles rotate in gradual increments about an axis which 
is perpendicular to the boundary. The energy of twist 
boundaries, in distinction to Bloch walls, is dominated by 
molecular packing considerations. Ref. 7 shows a diagram 
ofa  Bloch wall in a ferromagnet and gives a description of 
its behaviour. 

The beta phase of PVF 2 is orthorhombic with two 
planar zigzag chains per unit cell. The orthorhombic cell 
proportions are so close to hexagonal that the structure is 
often referred to as pseudo-hexagonal. The pseudo- 
hexagonal packing differs from the true hexagonal by only 
1%. Hasegawa et al. s, in order to account for the observed 
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structure factor in the X-ray diffraction pattern proposed 
that crystalline PVF2 is built of chains which deviate by a 
small amount from a planar arrangement. The two chains 
in the unit cell are required to be mirror images, that is, 
their deviations from the perfect zigzag arrangements are 
of opposite sense. Since the deflection angle is small (less 
than 7 degrees), this arrangement could be energetically 
favoured over the perfect zigzag arrangement in the 
crystalline phase without a major effect on the energy of 
the twist boundary. 

DESCRIPTION OF THE FORCE FIELD 

The intermolecular interactions between atoms of dif- 
ferent chains and between atoms in the same chain but 
separated by three or more atoms were taken from 
Farmer and Eby 9. The hydrocarbon parameters in this 
potential function are taken from Williams (set I1°). It 
should be mentioned that in the previously published 
work on the twist boundaries in crystalline polyethylene, 
similar hydrocarbon parameters based on set IV of Ref. 10 
were employed. In the current calculations the data from 
Kobayashi, Tashiro and Tadokoro 11 were employed for 
the intramolecular valence force constants. These con- 
stants are for interactions for bonded atoms and for atoms 
bonded to a common atom. For  the torsional coordinates, 
a slightly higher value was used, which corresponds to a 
torsion barrier of 10.45 kJ tool- 1 and is the same value ~ 
used for polyethylene. In addition, the terminal atoms of a 
particular torsional coordinate are subject to non-bonded 

interactions (also called 1-4 interactions). These inter- 
actions are part of the intramolecular interactions bet- 
ween atoms separated by three or more atoms. These 
non-bonded intramolecular interactions are represented 
by the same Buckingham-type potential field used to 
represent intermolecular interactions. This potential re- 
sults in strong repulsions between nearest F atoms on the 
same chain, as the F F spacing along the chain axis 
(0.254 nm) is less than twice the van der Waals radius of 
fluorine. The extra large C C C and F - C - F  bending 
constants in the valence force field used here prevents 
large distortions in the conformation. The dihedral angles 
in the planar PVF 2 were found, upon energy mini- 
mization, to deviate by less than 0.4 from the 180 values 
of the all-trans conformations. One can regard the extra 
energy which results from the interactions between F 
atoms belonging to neighbouring repeat units as an 
additive constant. 

TWIST BOUNDARY ENERGETICS 

The oligomer selected for the computations is comprised 
of 21 carbon atoms, with a structure 
CH3(CFzCH2)9CF2CH 3. The chain is packed in 
crystallographic register with lattice constants 
a=0.858 nm, b=0.491 nm. The planar zigzag segments 
are packed with their dipoles pointing along the b axis. 
The system includes a central chain, six neighbours which 
comprise the inner shell and 12 more distant neighbours. 
In order to minimize the packing energy of the entire 

Polarization 
Direction 

Center of Twist 
Boundary 

Polarization 
Direction 

Figure 3 Twist boundaries in 5 chains are shown, with the calculated conformation. There are 21 carbon atoms between the hatched rectangles near the 
ends. The middle rectangle shows the location of the centre of the twist boundary. The polarization directions are shown by arrows. The direction of the 
dipole is reversed as the molecule passes through a twist boundary. When an external field is present, the total energy is lowered as the twist boundary 
moves in a direction that allows more of the dipoles attached to each molecule to align with the field 
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system, the Newton-Raphson  algorithm for energy mini- 
mization was modified as follows: the conformation that 
minimized the energy of the central molecule was first 
determined. However, the minimization did not proceed 
to its completion. Instead, the adjusted conformation was 
placed in all the molecules and the minimization process 
was repeated. At the end of this process, the entire system 
was at its minimum packing energy, and all chains had an 
identical conformation. In this method the fluctuations in 
the atomic displacements often increase from one iter- 
ation step to another  and the results can diverge. To 
prevent divergence, it was necessary to slow the rate of 
convergence by attenuating the fluctuations in the 
displacements. 

We first calculated the total energy of the central chain 
in a perfect zigzag system. This energy, which includes all 
inter- and intramolecular interactions of the central chain 
was found to be - 4 5 . 3 1 k J m o 1 - 1 .  For  the sake of 
comparison with existing calculations on energetics of 
ferroelectric polymers we recalculated this energy with 
exclusion of the intra F . . . F  interactions between the 
nearest CF 2 groups. This energy is -132 .5  kJ mo1-1. 

The twist boundary, located near the middle of the 
same oligomer was constructed and energy-minimized, 
using the numerical algorithm described above. Each 
chain in the system was twisted 180 ° in the same sense to 
create a twist boundary. This created a bicrystal, with the 
two parts of the crystal in a twin relationship and with the 
dipoles pointing in opposite directions on the two sides of 
the boundary. The twisted region was confined within a 
ten-bond segment, that is, it has 5 crystallographic repeat 
units. The twist boundary, as determined from the energy- 
minimization calculation, is shown in Figure 3. This 
Figure shows a central chain and 4 surrounding chains in 
the pseudo-hexagonal packing. Polarization directions 
are shown by arrows. 

The total energy from all inter- and intramolecular 
interactions of the central twisted chain was calculated as 

Table 1 Dihedral angles of moving twist boundaries at initial, in- 
termediate and final steps 

Dihedral angles 

Bond End of End of 
# Initial Step 1 Step 2 Final 

1 

2 
3 
4 
5 
6 b 
7 T o  
8 w u  
9 s 

10 t a 
11 r 
12 y 
13 
14 
15 
16 
17 
18 

180 
174 
173 

- -  156 
158 
169 
168 
157 
156 
169 
169 
159 
154 
176 } 
177 
180 
180 
180 

Drive 
14,15 

178 
176 
176 

- -  156 
162 
175 
174 
157 
157 
174 
173 } 
175 
170 
152 
152 
178 
179 
180 

Drive 
10,11 

179 180 
175 179 
174 178 
156 174 
159 173 
173 / Drive 158 z 
173 J 6.7 156 
173 169 
169 169 
152 158 
152 154 
175 169 
169 169 
153 161 
152 152 
179 174 
180 175 
180 180 

b 
T o  
w u 
i n 

s d  
t a 

r 
Y 

Table 1 shows the dihedral angles at each bond for the low energy 
conformation of the twist at the start of the drive and at the end of each of 
the three drive steps. Both bonds driven are changed in equal increments 
during each step. The final low energy conformation, similar to that at 
the start, is shifted by one repeat unit (2 bonds) along the chain 

0.73 kJ mol - 1. The excess energy associated with the twist 
was therefore 46 kJ m o l -  1. For  comparison, the excess 
energy associated with the 180 ° twist boundary in poly- 
ethylene was found 6 to be 64.5 kJ mo1-1. The lower 
value here is a consequence of the force field, and also is 
attributed to the presence of strong intramolecular forces 
of repulsion between neighbouring CF2 groups which 
tend to be slightly reduced by the chain twist. In the 
present calculations dipole-dipole electrostatic inter- 
actions are not included, since their contribution to the 
excess energy associated with the twist boundaries is 
negligible. 

M O T I O N  OF TWIST B O U N D A R Y  

The twist boundary, as seen from Table 1, is built 
of alternating pairs of dihedral angles, one pair close to 
the trans value, the other pair closer to gauche. The 
twist region starts and terminates with a pair of dihedral 
angles near 155 ° . This remarkably ordered arrangement 
of the dihedral angles, which is a consequence of the 
particular force field for the non-bonded interactions, 
greatly facilitates the selection of the best stratagem to be 
used in order to advance the boundaries in one direction 
without encountering high barriers. 

The technique employed in driving the twist boundary, 
the so-called 'bond-driving method'  was described ear- 
lier 12. The mechanism used here, which involves driving 
the dihedral angles at pairs of bonds in succession in the 
entire twist boundary differs from the mechanism of 
driving an isolated defect in a lattice which was used for 
polyethylene. The motion of the twist in PVF 2 is over 
relatively low energy barriers. The cooperative nature of 
the movements of various bonds in response to the 
motion of the artificially driven bond is of a much shorter 
range than was the case for twist bearing defects in 
polyethylene. A driven bond in a PVF 2 twist boundary 
induces a dihedral angle which is one bond removed from 
the driven angle to move in the opposite sense by 
approximately the same amount,  so that the total amount 
of twist (180 °) is preserved. Other  bonds, including the one 
next to the driven bond, hardly change. The sequence of 
choosing dihedral angles to drive defines the direction in 
which the wall advances. The first pair of driven angles 
expands the thickness of the boundary. The sequence of 
drives shown in Table ! propagate the pairwise rotations 
through the boundary. The final step results in the 
rotation of the tail part of the boundary into a trans 
conformation. The boundary has now progressed by one 
crystal repeat unit (two bonds). One could say that this 
process 'works'  a pair of trans dihedral angles from the 
advancing end of the boundary toward its trailing end. At 
the end of three cycles of this bond-driving procedure, the 
entire twist boundary is advanced by one repeat unit. The 
advanced twist has a conformation very nearly the same 
as its initial conformation. Table 1 presents the dihedral 
angles of the system at the starting point and at the end of 
each one of the three driving processes. The energy of the 
twist boundary as a function of the driven dihedral angles 
is shown in Figure4. This Figure shows the twist energy as 
a function of the dihedral angle of the driven bond for each 
of the three driving bond processes. As is seen in Figure 4, 
the barriers that the twist boundary must surmount do 
not exceed 7.5 kJ mol-1.  This estimate must be regarded 
as an upper bound on the barrier, for the following 
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Figure 4 Twist boundary energy is plotted as a function of the dihedral 
angles of the driven pairs of bonds. The three stages of the driving 
processes are shown. They are separated by small gaps. The numbering 
of the driven dihedral angles is given in Table 1 

reasons: energy minimization of an infinite system, using 
the method employed in this work does not guarantee 
that the true minimum-energy path is obtained. The 
algorithm used, and, in particular, the selection of the 
starting conformation and of the length of the iteration 
step, affect the minimum-energy path that the twist 
boundary is launched upon. Another factor that could 
lead to lower barriers in the true minimum-energy path is 
a relaxation of the lattice constants. In our computations, 
the lattice constants are kept fixed throughout the system. 
Lower barriers would be obtained if the parameters a and 
b in twist boundary were treated as adjustable variables 
during the energy minimization procedure. There are also 
probably mechanisms that permit the wall to advance 
along lines that sweep across the wall rather than as a rigid 
plane. Such mechanisms tend to reduce the effective 
barriers to wall motion. 

EFFECT OF APPLIED ELECTRIC FIELD ON 
WALL MOTI ON 

The literature 1 quotes the value of 7.0 × 10 - 3 0  coulomb- 
meter for the dipole moment per repeat unit of beta- 
PVF2, in a direction normal to the chain axis. This value is 
strictly valid in a vacuum, or cavity. According to 
Frohlich 13, the continuum theory predicts that in a 
crystal the real moment is considerably higher. The 
correct moment is obtained by multiplying the vacuum 
moment by a factor which is equal to (e~ +2)/3, where e~ 
is the dielectric constant at infinite frequency. The dipole 
moment per repeat unit in the uniform dielectric medium 
is, therefore, equal to 12.0 x 10 3 o coulomb-meter. Purvis 
and Taylor ~4 pointed out that the continuum theory is 
exactly valid only in uniformly polarized crystals so that it 
is only an approximation in beta PVF 2. The presence of 
domains of opposite polarization on either side of a 
domain wall tends to reduce this field enhancement, 
perhaps to zero. In an applied poling field of 2 MV cm -~, 
the energy (dipole moment times electric field) associated 
with the rotation of a dipole unit is therefore within the 
range of 0.87 to 1.45 kJ mol-1.  This number is significant 
enough to make a large increase in the probability that the 

twist boundary will advance over the potential barrier 
(7.5 kJ mol 1 or less) and advance one repeat unit. If, as 
seems likely, nature finds a lower boundary than our 
somewhat arbitrary drive mechanism, the applied electric 
field will cause the twist boundary to advance even faster. 

M O D E L L I N G  OF BOUNDARY MO TIO N  AS 
SOLITONS 

Our calculations showed that the twist boundary moves 
without significantly changing its shape. Therefore, the 
system possesses a kind of translational invariance and 
can be modelled by a soliton. The single soliton cor- 
responds to a moving wall separating two domains of 
opposite polarization. Hence, we model this soliton on the 
theory of the motion of Bloch walls in magnetic crystals. A 
typical Bloch wall is shown in Figure 23, Ref. 7. Ref. 15 
presents a theory of Bloch walls modelled on sine-Gordon 
equation for solitons. The variable of this equation 
appropriate for PVF 2 is described in terms of Eulerian 
angles and it measures the amount of twist, or simply, 
twist 6. The stability of the magnetic Bloch domain wall is 
determined from two kinds of energies: the exchange 
energy and the energy due to anisotropic effects 15. In our 
modelling, the exchange energy is replaced by the energy 
associated with the interaction energy between neigh- 
bouring repeat units. The coefficient of this energy is 
called the elastic, or spring constant. This constant can be 
determined from the calculated intramolecular energy 
associated with each repeat unit and its dependence on the 
amount of twist. The anisotropy energy of the ferro- 
magnetic domain wall is replaced by the energy that 
combines the energies associated with the interchain 
potential. The force constant associated with this poten- 
tial is'estimated from the excess intermolecular energy of 
twist boundary over that of a planar zigzag chain. It 
should be mentioned that the interchain energy in the 
twist boundary is of attraction, but the excess energy as 
defined here is of repulsion. The intrachain energy 
associated with the twist is always of repulsion. 

These two energies, one associated with elastic forces, 
and the other with intermolecular forces balance each 
other leading, upon energy minimization, to the minimum 
energy conformation of a twist boundary. 

The soliton theory of domain wall 15 allows us to 
compute the excess energy per unit area of the twist 
boundary and the width of the wall directly from the two 
force constants which characterize the potential energy of 
the boundary. The results agree well with those obtained 
from the twist boundary energetics, described above. 
Since it is of interest to model the behaviour of twist 
boundaries in the presence of an external electric field, 
external electric forces are added as external 
perturbations 16.. Dissipative forces balance the driving 
forces which originate from the applied electric field, so 
that the soliton velocity approaches an asymptotic value. 

The energy associated with the applied electric field in 
PVF 2 is much smaller than the energy associated with 
interchain interactions within the domain wall so it is 
reasonable to use the perturbation approach. In the 

* Nakajima et al. 17 provide numerical solutions of the soliton equation 
with external and dissipative forces for a large range of these parameters. 
Thus, a wider range of forces, where perturbation theory is not 
sufficiently accurate can be treated 
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limiting case when the energy from the polarizing field 
overwhelms the barrier energies, the soliton velocity 
reaches its maximum value. 

In summary,  the soliton model provides a mathemati-  
cal model for various dynamic aspects of the propagating 
wave of electric polarization associated with a mobile 
twist boundary. In particular, the switching times, which 
are given to experimental verification I 8, can be estimated 
as a function of the strength of the applied electric field 
and of the crystalline forces which affect the motion of the 
twist boundary. The soliton solution as outlined above 
leads to fast poling times and to resonance phenomena 
not observed. For  a typical 10 nm thick lamella the poling 
times predicted are in nanoseconds. The observed poling 
times is are in microseconds. A plausible assumption is 
that the wall motion is ' impeded',  'scattered' or 'dissi- 
pated' by folds, chain ends and other structure-disrupting 
defects which have not yet been either modelled or 
experimentally measured in adequate detail. The scatter- 
ing of well-defined walls thus becomes the matter  of most 
interest for the future. 

There is an alternate approach,  based on the Smol- 
uchowski diffusion equation. This was developed in Ref. 
19 for the motion of a dispiration. Ref. 19 provides a 
general formulation for calculation of drift velocities for a 
defect confined between reflecting or absorbing boun- 
daries in presence of external forces with a step function 
dependence on time. A similar calculation for a twist 
boundary would require an estimate for the mobility of 
the domain wall (or of the diffusion coefficient), which has 
to be determined independently. It can be assumed that 
the diffusion constant for the domain wall is higher than 
for the dispiration, since the twist boundary flows over 
lower energy barriers than point defects. The method 
given in Ref. 19 leads to an estimate of drift velocities as 
sums of velocities caused by external (electric) forces and 
by diffusional, or Brownian, forces. The poling times are 
inversely proportional to drift velocities. 

Diffusion of a twist boundary also provides a useful 
model to describe polarization of ferroelectric polymers. 
The connection between the controlling microstructural 
features and polarization times remains to be established. 

In summary,  the soliton model neglects Brownian, or 
random, motions of the domain wall under applied forces, 
while the stochastic defect diffusion model over- 
emphasizes them. Both models contain parameters not 
yet satisfactorily connected to microstructural features at 
the atomic scale. 

C O N C L U S I O N S  

The poling of the beta phase of PVF 2 was investigated in 
terms of the propagation of twist boundaries at which all 

the chains are twisted in the same sense in the pseudo- 
hexagonal lattice. The twist boundary overcomes a series 
of barriers to advance. The heights of the barriers were 
found not to exceed 7.5 kJ m o l -  1, and are probably even 
lower than this. The twist boundaries advance in such a 
way that, after moving a distance equal to one repeat unit, 
the same low energy conformation recurs. Under poling 
conditions most commonly employed, the poling force, 
pE, is comparable in its magnitude to the potential barrier 
that the travelling twist must surmount. The results 
indicate that the movement of the twist boundary, in 
distinction to previous models which consider only one 
chain to twist at a time, provides a model for the poling of 
PVF 2 that is feasible energetically and kinetically. Ad- 
ditional considerations are presented which show how the 
dynamics of the twist boundary can be modelled by 
motion of a soliton or by a diffusion process. 
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